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Abstract

This paper presents the first investigation into the clas-
sification of faces from unconstrained video sequences in
natural scenes, i.e., with arbitrary poses, facial expres-
sions, occlusions, illumination conditions and motion blur.
To overcome difficulties from individual frames, a novel
Bayesian formulation is proposed to estimate the posterior
probability of a face trait at a specific time, conditional on
features identified in previous frames of a video sequence.
A Markov model is used to represent temporal dependen-
cies, and classification involves determining the maximum
a posteriori class at a given time. Showing the robustness of
the proposed system, the Bayesian framework is first trained
on a database collected under controlled conditions, and
then applied to the previously unseen faces obtained from
an unconstrained video database. The Markovian tempo-
ral model results in a gender classification rate of 90% by
the last video frame, and is shown to outperform alternative
approaches previously introduced in the literature.

1. Introduction

Classifying face images in terms of soft biometric traits,
such as gender, age or ethnicity, has been receiving a wide
amount of attention in the recent computer vision literature,
especially in the context of video surveillance. Perform-
ing face detection and facial trait classification in realistic
scenarios presents significant challenges [26], particularly
in terms of achieving robustness over large changes in a
person’s viewpoint (head pose), various face scales, non-
uniform illumination conditions, partial occlusion (see Fig-
ure 1) and overcoming potentially noisy images or false
face detection. To date, the face classification, particu-

larly gender classification, literature has focused on rela-
tively restricted scenarios with still images of frontal/near
frontal, upright faces from controlled databases [13, 17, 10,
11, 4, 12, 3, 8, 20]. Relatively few formulations have ad-
dressed classification of face images acquired from multi-
ple viewpoints [7, 9, 14, 22, 15] or from video sequence
data [7, 9, 18, 21]. Even though some works claim to
introduce algorithms for face classification from uncon-
strained environments, these algorithms have several stages
which are not compatible with real-world unconstrained
environments, such as the need for good face alignment
(e.g. no extreme head pose is allowed) and/or the require-
ment for specific facial regions to track (e.g. no occlu-
sion is allowed). Furthermore, such approaches were de-
veloped without any consideration of joint occurrence of
arbitrary facial occlusion, arbitrary and non-uniform light-
ing, arbitrary viewpoints and arbitrary facial expression.
Rather, they [13, 9, 18, 17] focus on analyzing images (or
video frames) with limited degrees of freedom. For in-
stance, some work well on multi-view (e.g. specific, non-
arbitrary) face images, but with optimal and fixed indoor
lighting, whereas some others work well on video frames
from only frontal faces, arbitrary background clutters and
optimal indoor illumination, but without any occlusions, or
non-uniform lighting (e.g. video databases obtained from
TV broadcasts news).

The proposed methodology in this paper presents the
first attempt to achieve gender classification from face im-
ages acquired from totally unconstrained video sequences
where the person is unrestricted in terms of facial expres-
sion, viewpoint, illumination, occlusion, etc. (see Figure
1). We present a Bayesian framework for classifying faces
in video sequences acquired from realistic unconstrained
viewpoints and where cluttered background, arbitrary and
non-uniform illumination, and free movement of the sub-
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Figure 1. Sample faces from video frames in our free-form (uncon-
strained), in-house video database. Note that the original image-
scales are preserved.

jects are permitted in the scene. As a precursor to classifi-
cation, we first require a robust face detector to work under
these conditions. To this end, we found that the viewpoint
invariant face detection algorithm found in [22] worked bet-
ter than the one of [24] under such arbitrary conditions.
SIFT [16] features obtained from training images are clus-
tered -according to the algorithm in [22]- to learn the most
robust features differentiating between female and male.
The face class is modeled - on binary presence/absence of
these SIFT features - as a generative Markov model, where
features in a detected and tracked face are assumed to arise
from a single person of a particular class.

Model parameters can be estimated off-line from a set
of still face image pairs acquired from nearby viewpoints
about the same face, thereby approximating adjacent views
of a video sequence. Thus, the proposed Markovian tem-
poral model is first trained on a well-established still face
image database (the FERET[1]) of uniform illumination,
noise-free, fixed face viewpoints, and the absence of major
occlusion. The model is then evaluated on faces detected
from in-house free-form (unconstrained) video sequences -
with no restrictions on the person’s movements, background
cluttering, occlusion or lighting- by determining the maxi-
mum a posteriori class of a face given a collection of im-
age features associated with an individual face. Evidence
in the trait class (e.g. gender) is accumulated probabilisti-
cally over the entire video sequence, thus permitting quick
and robust classification over time. As the face classifi-
cation amid viewpoint changes in video sequences is rel-
atively a new area of research, public datasets are rare, and
we demonstrate the effectiveness of our approach on a new,
proprietary video dataset. We compiled a free-form face
video database of 9000 video frames from 30 unique sub-
jects (15 males and 15 females), exhibiting a high degree
of appearance variability over time due to changes in view-
point, illumination, facial expression, degree of occlusion
(sunglasses, cups, hands), etc. Our experimental results
provide a detection rate of 90% by the last video frame and
show that the proposed classifier significantly outperforms
alternative approaches [22, 21, 20, 5] (Section 4.4) and the
”bag-of-frames” (Section 4.3), an approach that classifies

each frame of a video sequence separately and then con-
siders the results from the complete set of frames from the
sequence when asserting the final classification.

2. Related Work

Moghaddam and Yang [20] used the SVM in conjunction
with pixel intensity values, and reported one of the highest
classification accuracies in the literature. However, their re-
ported results were based on experiments on the FERET
database [1], which was collected under controlled condi-
tions. Furthermore, since they only used frontal face im-
ages, a common geometric shape alignment and masking
were possible to apply on all face images. However, such
an alignment and masking processes are not applicable to
the faces from our unconstrained video database.

Shakhnarovich et al.[21], to our knowledge, were the
first to classify gender from video frames. Their automatic
face detection algorithm was based on that of Viola&Jones’
[24]. Shakhnarovich adopted the Haar-like features [24]
and used Adaboost for feature selection purpose. For ex-
perimental purpose, an image database from World Wide
Web (WWW) and a video database from 30 subjects were
collected. However, the images with faces more than +/−
30 degree off frontal orientation were removed from the
WWW image database. The video database, on the other
hand, captured faces with different poses and expressions,
but under controlled illumination conditions. For the image
data set, the SVM with RBF kernel was used on Adaboost
selected Haar features for the gender classification purpose
whereas for the video database, the fusion formula in Equa-
tion 10 was utilized (see Section 4.4).

The object class invariant (OCI) approach of Toews and
Arbel [22] created a viewpoint-invariant appearance model
for face detection. The model used local features due to
their high degree of invariance to various transforms, i.e.
SIFT [16], to probabilistically model a robust geometrical
model based on which faces are detected and localized.
Later, the model features were used for gender classifica-
tion from multi and arbitrary viewpoints. However, com-
paring the approach in [22] to the proposed one, their work
presents preliminary work examining gender detection from
static-face images -not from video sequences- with no mo-
tion blur or arbitrary occlusions and with no discussion as
to how to accumulate information over single frames. Their
results were based on a very small database of 132 faces
(highly biased towards males, i.e. 100 males). For video se-
quences presented in this paper, our approach outperforms
the approach in [22] by 20% (Section 4.3).

Figure 2 summarizes several other approaches intro-
duced in the literature on the topic.



Figure 2. Comparison of different approaches in gender classifica-
tion literature.

3. Proposed Methodology
Consider a sequence of video frames of a face moving

in an uncontrolled manner through a scene. At any individ-
ual frame, the person can be found at arbitrary viewpoints
(e.g. due to the head movements) with respect to the cam-
era, or partially occluded, etc. The task of the system is to
classify the gender of the person in the scene based on the
acquired collection of frames. The key to the success of
the algorithm described here is to first detect and localize
faces in the scene and to acquire a set of features from the
faces under such arbitrary conditions. This pre-processing
step is not the focus of the work described here and other ap-
proaches can be examined (see Section 4.3). Once acquired,
these features can then be used to classify the face according
to traits, like gender. We now define a Bayesian formulation
for the classification of faces over image sequences.

Let Ft = {ft,1, . . . , ft,N} represent a set of N features
extracted from an image frame at time t. Each single fea-
ture, ft,j , is a binary feature representing the occurrence or
non-occurrence of a potentially class-related feature. Let C
denote the random variable for a face trait class. The poste-
rior probability of the face class C at time t given features
extracted in all previous frames Ft, . . . , F1 is:

p(C|Ft, Ft−1, . . . , F1), (1)

where C can generally take on any face trait class value. In
this paper, we consider the binary trait of gender (i.e. male
or female). Therefore C = c or C = c, where c and c are
opposing genders. The optimal Bayes classification at time
t is:

c∗ = argmax
c

{
log

p(C = c|Ft, Ft−1, . . . , F1)

p(C = c|Ft, Ft−1, . . . , F1)

}
. (2)

One can define the posterior probability density function
over frames, such that:

p(c|Ft, Ft−1, . . . , F1) =
p(Ft, Ft−1, . . . , F1|c)
p(Ft, Ft−1, . . . , F1)

p(c), (3)

where p(c) is the a priori probability on the class trait
value c, p(Ft, Ft−1, . . . , F1|c) is the likelihood for the
class trait over all the features in the video sequence, and
p(Ft, Ft−1, . . . , F1) is the joint probability density function
over all the features. Alternatively, utilizing the Chain rule,
one can define the posterior probability density function re-
cursively over frames, such that:

p(c|Ft, Ft−1, . . . , F1) =

p(Ft|Ft−1, . . . , F1, c)

p(Ft|Ft−1, . . . , F1)
p(c|Ft−1, . . . , F1). (4)

In Equation (4), the posterior density function
p(c|Ft−1, . . . , F1) for the class given the features from all
the previous frames therefore acts as a prior for the current
frame at time t.

Assuming that the face moves slowly relative to the
video frame rate, significant dependencies will exist be-
tween facial feature sets Ft and Ft−1.

We make the following first-order Markov assumption:

p(c|Ft, Ft−1, . . . , F1) ∝ p(Ft|Ft−1, c)p(c|Ft−1, . . . , F1).
(5)

The implication of the Markov assumption is that the fea-
ture set Ft is conditionally independent of features in all
previous frames Ft−2, . . . , F1 given features Ft−1 in the
most recent frame and the class value c. The density
p(Ft|Ft−1, c) can be learned from the training set. Given
the fact that the speed of the person’s movement between
frames is unknown and given the strong possibility of oc-
clusion, one can make further simplifications by invoking
the Naive Bayes assumption regarding the relationships be-
tween the features. Namely, that individual features at time
t, ft,i, are conditionally independent from other features in
the previous frame, given trait value c. This leads to:

p(Ft|Ft−1, c) =

N∏
i=1

p(ft,i|ft−1,i, c). (6)

During training, one can then define a probability lookup
table which compiles the occurrence frequencies for all
possible combinations of the feature pairs ft,i, ft−1,i for a
given trait value c over the entire database. The assumption
of feature independency is reasonable for our model since
it is based on spatially separated SIFT features, not on pix-
els. This assumption allows us to properly address the com-
monly occurring problem of partial facial occlusion, where
many detection and classification frameworks fail to handle.

Embedded within the recursive formulation of the Equa-
tion (5) for the posterior is the likelihood term for the first



frame p(F1|c). In general, under the assumption that indi-
vidual features in a frame t, ft,i, are conditionally indepen-
dent given trait value c, one can estimate p(Ft|c) as:

p(Ft|c) = p(ft,1, . . . , ft,N |c) =
N∏
i=1

p(ft,i|c), (7)

where p(ft,i|c) defines the probability of the particular fea-
ture in frame t given a class, c. It can be estimated off-line
during training as in [22]:

p(ft,i|c) ∝
k(ft,i, c)

p(c)
+ dt, (8)

where k(ft,i, c) is the count of the joint occurrence event
(ft,i, c) and p(c) is the probability of occurrence of trait
value c. dt is the Dirichlet regularization parameter required
to compensate for the sparsity of the feature occurrences.
As a uniform prior is assumed, dt is thus constant for all t.

4. Experiments
We have conducted several experiments on the collected

free-form video database: (1) Evaluation of the robustness
of the utilized face detector [22] and the cascaded face de-
tector [24] over random viewpoints of face; (2) Evaluation
of the performance of the methodology (SVM with pixel
intensity) in [20] which reported the highest gender classifi-
cation accuracy in the literature; (3) Evaluation of the previ-
ously introduced classifier fusion methods for gender clas-
sification by Shakhnarovich et al. [21] and by Castrillon-
Santana et al. [5]; (4) Evaluation of the proposed Marko-
vian temporal model, and comparison of this approach and
the method introduced in [22].

4.1. Experimental Setup

For training purposes, we built a face database from 445
female and 445 male FERET [1] subjects of various ethnic-
ities under controlled illumination conditions, with/without
glasses, etc. As a pre-processing step, color FERET im-
ages with resolution of 256x384 pixel were first converted
to grey scale. For each of the 890 subjects, 5 viewpoint
images were used (2 profile, 2 quarter and 1 frontal), for a
total of 4450 images (see Figure 3). This database is used
by the OCI face detector [22] and by the proposed Marko-
vian temporal model to learn gender under controlled con-
ditions. Our gender classifier should then prove to be robust
to variations from these ideal conditions when tested under
arbitrary conditions.

Since there is no standard annotated face video database
in the public domain, for testing purposes, we collected a
video database of 30 unique subjects (15 females and 15
males) using a Canon PowerShot SD770 camera. For each

(a) (b) (c) (d) (e)
Figure 3. Viewpoint images of a training subject: (a) frontal, (b)
left quarter, (c) right quarter, (d) left profile, and (e) right profile.

subject, a 60-second video with 30 fps (1800 frames per
subject) and 640x480 resolution was recorded. The sub-
sampling of frames was empirically set to 5 frames per sec-
ond, leading to 300 × 30 = 9000 video frames in total to
evaluate the classifiers in Section 4.4 and Section 4.3. The
major guideline we followed during the video collection
was not to restrict our subjects to any kind of controlled
motion or environment. Unlike many video or face im-
age databases used in the face classification literature, each
video sequence was shot under different illumination and
background conditions. Furthermore, our subjects were free
to move as they wanted, resulting in arbitrary face scales,
expressions, viewpoints, local and/or global occlusions (due
to closed eyes, glasses, hand, coffee cup, scarf or hat). Fig-
ure 1 illustrates such challenges depicted by our in-house
video database. The only restriction was made to have a
single person in the scene of each video clip.

Both in training and in testing databases, the male:female
ratio was kept 1:1, so as to avoid biasing any gender class
(i.e. p(c) in Equation (3) and Equation (8) is uniform).
Similarly, it is important that the distributions of male and
female data over viewpoint in the video database do not
demonstrate any significant gender-related bias. To this end,
we manually labeled the viewpoint angle in all 9000 video
frames of our test data. The viewpoints are represented by
one of the following angles: [-90 (left profile), -75, -60, -45,
-30, -15, 0 (frontal) , 15, 30, 45, 60, 75, 90 (right profile)].
Our observations show that the video database has nearly
equal proportions of female and male faces in each view-
point. Furthermore, we have a broad variety of viewpoints
for each subject in our video database. Thus, our experi-
mental results are not biased by any specific viewpoint or
subject or gender class.

4.2. Evaluation of Face Detection in Free-form
Video Sequences

Prior to the gender classification phase, face detection
and facial feature extraction steps are required, however
they are not the focus of the work presented in this paper.
Considering our test video database, we need to detect and
localize the face in the scene and extract the gender features
robustly regardless of the face viewpoint changes, partial
occlusions and global/local illumination changes. Face lo-
calization and detection can be addressed via various tech-



niques [25, 26, 24, 23], whereas the crucial step is decid-
ing on which features to use. A variety of different image
features have been for used modeling the face, including
global features, such as principal components [23, 20] or
independent components [11], and local features, such as
Haar wavelets [24, 21] or scale-invariant features [19, 16].
In general, global features are sub-optimal in terms of de-
tection performance, while local features can be robustly
identified amid factors, such as the occlusion and face vari-
ability. Haar wavelets are not invariant to image rotation.

In terms of face detection from free-form video se-
quences, we chose to examine two face detectors. We first
examine the Viola & Jones’ cascaded detector [24], one of
the best and most well-known detectors available, due to
its high speed, accuracy and reliable open source imple-
mentation. We next examine the OCI face detector [22], a
viewpoint-invariant detector which can locate faces in nat-
ural images by estimating a face reference frame from lo-
cal features (e.g. SIFT [16]). The viewpoint-invariant face
model (OCI) uses the most commonly occurring SIFT fea-
tures in the face images to represent the image regions con-
taining faces.

We evaluated the OCI [22] and the cascaded [24] face
detectors on the in-house free-form video database. The
purpose of this experiment is to i) select a face detector that
is robust to any changes in facial pose, and ii) to ensure that
our final classification results are not biased by a dominant
false detection of a specific facial pose.

The implementation of the Viola & Jones’ face detector
provided by OpenCV 1.0 [2] is used. Different cascaded
detector models obtained from different viewpoint training
databases are employed. The decision as to which possi-
ble detection to use for a frame is done by using the ground
truth. We basically choose the detection which maximizes
the intersection area between the ground truth bounding box
and the detected bounding box. Note that while this reso-
lution strategy for detector responses cannot be used in a
practical setting without ground truth; here it allows us to
consider a generous, best-case scenario for Viola & Jones’
detection [24].

The comparison of two face detectors is shown in Fig-
ure 4. If the evaluation is done without considering the vari-
ations in facial pose, the OCI and Viola & Jones approaches
seem to have a very comparable detection accuracy (see
Figure 4 (a)). However, it is crucial to note that the OCI
detector is only trained on 890 random viewpoint FERET
images, whereas the cascaded detector is trained over thou-
sands of images. The shape of the accuracy curves are very
similar due to the fact that the collected in-house video se-
quence database is not biased by any viewpoint (see Section
4.1).

More interestingly, as seen in Figure 4 (b), Viola’s detec-
tion has a large variance in accuracies over different view-

(a)

(b)

Figure 4. Comparison of the OCI and the cascaded face detectors:
(a) average face detection performance over the whole in-house
video sequence database, (b) face detection performance evaluated
separately for each facial pose.

points. Here we can see the detector accuracy against the
overlap threshold used for detection, the latter defined as
the cutoff for the percentage of overlap between the ground
truth and the detected facial regions. For a 60% threshold,
for example, the difference between the maximum and min-
imum detection rate for different poses goes up to 75% for
the Viola detector. On the other hand, the OCI detector has a
more concentrated graph in Figure 4 (b), which shows that
this face detector performs consistently and robustly over
viewpoint. As a point of comparison, the difference be-
tween the best and the worst detection accuracy for a 60%
threshold for the OCI is only 45%. The only viewpoint an-
gle for which the OCI detector [22] performance drops is at
90 deg profile images, which is also the viewpoint with the
lowest accuracy for the Viola cascaded detector [24]. Fur-
thermore, it should also be noted that Viola & Jones’ detec-
tor performs well for frontal and near frontal face images,
which makes it the optimal face detector when using only
frontal face image databases [21, 17].

4.3. Experiments with Our Methodology

For the reasons cited above, we chose to use the
viewpoint-invariant appearance (OCI) model [22]. The pa-
rameters of the OCI model used in this work are based on
those found in [22]. Once the OCI model is robustly learned



from the training dataset, it can be used on video frames
in the test database to detect and localize face regions and
obtain the facial features. Furthermore, facial features ex-
tracted from training images are used to estimate the prob-
abilities mentioned in Section 3.

After learning the OCI face detection model from 890
FERET images, the rest of the database, i.e. 890×4 = 3560
images, was used to learn the proposed Bayesian classifier,
namely the probabilities in Equation (8) and the probability
lookup table. It is important to note that the Markov transi-
tion probabilities in the probability lookup table were esti-
mated by mirroring the left profile (see Figure 3 (d)), the left
quarter (see Figure 3 (b)) and the frontal (see Figure 3 (a))
images of each FERET subject. As the face images of
the same person were approximately mirror-symmetric, im-
age pairs obtained by mirroring here simulated the adjacent
frames of a video sequence, from which the features of Ft−1

and Ft were obtained.

4.3.1 Experimental Results

Once we obtained video sequences, we examined different
metrics to determine the gender class for each frame. The
simplest and probably the most widely accepted baseline in
the literature would be to treat each frame individually and
make the trait decision on frame by frame basis. For this
purpose, we used the viewpoint-invariant classifier in [22]
on each video frame as if it were a static image and obtain
the decision, c∗, independently of all other frames:

c∗ = argmax
c

{
log

p(c|Ft)
p(c|Ft)

}
. (9)

Ft is the set of face related SIFT features obtained at time
t. The classification decision for 9000 video frames is
achieved via applying the threshold at which the proba-
bilities of misclassifying males and females are equal, i.e.
the equal error rate (EER). The method introduced in [22]
achieves an accuracy of 70% on 9000 video frames, which
is relatively low for high accuracy needs in real-world bio-
metric security applications, such as video surveillance.

As the next step, we accumulated evidence over indi-
vidual frames probabilistically so as to increase the over-
all accuracy. To our knowledge, the gender classification
literature does not discuss any gender classifier that accu-
mulates viewpoint invariant-information throughout video
sequences, either at a feature-level or at a decision-level.
Thus, we conduct two experiments where we introduce and
compare two different fusion schemes: (i) decision-level in-
formation fusion on classifier in Equation (9), here referred
to as a bag-of-frames (BOF) model, and (ii) decision-level
information fusion on the proposed classifier which prob-
abilistically accumulates evidence (see Section 3). After
the frame scores are obtained via the metric in Equation (9)

Figure 5. Consecutive video frames from a subject’s short clip with
the obtained class decisions via the proposed Bayesian classifier.
Top left corner shows the signs for class decisions, i.e. female
(pink) and male (blue). Note that this particular figure displays
only frontal faces, however our video database contains any im-
ages containing any number of random viewpoints (see Section
4.1 and Figure 1).

Figure 6. Classification accuracy comparison of different fusion
schemes for 30 subjects with 300 frames per subject.

and the proposed metric in Section 3, the majority voting
operator is applied to them. Majority voting is achieved
by looking at all the class decisions for frames at times
{1,...,t-1,t} and deciding the final class label as the
one that occurs most often. The class decision for each
frame (see Equation (2)) requires a fixed threshold which
is determined empirically, e.g. the threshold of 61 is used
for the experiment in (i) and 51 in (ii) where the normalized
score range is [0...100].

Figure 5 shows consecutive frames of a short video clip
from our video database with corresponding class decisions
obtained by the proposed approach. One can see that the
class decisions for the first few frames are either inconclu-
sive or inconsistent. However, as we accumulate more ev-
idence over frames, the correct class decision is obtained
repetitively regardless of the large occlusion that the coffee
cup introduces to the system.

As Figure 6 shows, gender classification accuracy in-
creases as we have more frames regardless of which fu-
sion scheme is used, leading to the accuracies of 70% for
the BOF approach and 90% for the proposed approach at
the end of the video sequences, i.e. 300th frame. At first
few frames, both of the fusion schemes start with similar
accuracies, whereas as we accumulate statistical informa-



tion from the previous frames, majority voting starts to give
much better accuracies for (ii) compared to the simpler fu-
sion scheme of (i). We believe that the feature accumulation
provides a better, much robust classification performance
because the approach in Section 3 accumulates information
over the entire set of facial features.

It is important to note that at frame #132, the first largest
gap between the BOF approach in (i) and our methods in
(ii) is observed: gender classification accuracies of 70% and
90% are obtained by the algorithms in (i) and (ii), respec-
tively. The maximum classification accuracies are 76.6%
for (i), whereas it is 93.3% for the proposed approach in
(ii). Furthermore, it is observed that despite the constant
increase in the classification accuracy for both schemes,
both algorithms suffer from local accuracy drops for some
frames ( e.g. around frames #50, and #250). Our obser-
vations indicate that when the face localization is very off
the ground truth in a number of consecutive video frames,
- although the effect of poor localization is minimized by
using local features- we may obtain poor classification re-
sults since the number of extracted SIFT features can be
very small. We observe that certain viewpoints, such as the
ones where the subject is looking down, lead to failure in
face localization. It is due, in part, to a failure of the under-
lying assumptions of the OCI model. In addition, the train-
ing database does not capture all the viewpoint variations in
the videos. This might be fixed by having a larger training
database containing a broader variety of viewpoints beyond
the limited viewpoints provided in the FERET[1] database.

4.4. Evaluation of the SVM Classification and Pixel
Intensity-based Features in Free-form Video
Sequences

As we mentioned in Section 2, there are several papers
written on gender recognition, but none of them addresses
the problem in this paper. Thus, we decided to select the
approaches in pioneering papers, such as [20], [21] and
[5], and apply them on our challenging database in order
to compare their performances to ours. We first examined
the approach in [20] for classifying the 9000 video frames
from our in-house video database. Different image normal-
ization techniques and image sizes are empirically investi-
gated. The best gender classification accuracy is obtained
by using no-normalization and downsampling detected face
images to 24x24 ( similar to the findings in [17]). We have
trained the SVM classifier on the FERET database. The
SVM implementation provided by LIBSVM [6] is used in
our experiments. The best SVM parameters for RBF kernel
(γ = 0.000488, C = 8) were obtained using a grid search
and a 5-fold cross-validation. Average SVM classification
accuracy over all 9000 video frames of 65.6% is obtained
when the OCI face detector is used, whereas it is 60.2%
for the cascaded face detector case. We have observed that

(a)

(b)

Figure 7. Performance of the SVM classifier with different tempo-
ral fusion methods and face detectors: (a) the SVM classifier with
Majority voting, (b) the SVM classifier with fusion approach in
equation 10.

regardless of which detection algorithm is used, the SVM
classifier tends to tag males as females.

We also examined majority voting to fuse gender class
labels obtained from each frame [5]. As it is shown in Fig-
ure 7 (a), in terms of classification accuracy, the classifier
that uses faces detected by OCI [22] outperforms the one
based on the results of the cascaded face detector [24]. The
the combination of {SVM+pixel intensity+Majority+OCI
face detector} results in a gender classification rate of
63.3% by the last video frame (see Figure 7 (a)).

Finally, we adopted the proposed classification fusion
method by Shakhnarovich et al. [21]:

D(T ) =
1

T

T∑
i=0

e−αiV (f(xt−i))Q(xt−i), (10)

where D(t) is an exponentially weighted sum of classifier
outputs, f(t), fom the past T frames. V (x) is a voting func-
tion and Q(x) is a quality function. In our experiments, af-
ter investigating various voting and quality functions (such
as degree of motion blur), a linear ramp, V (f(xt−i)) =
f(xt−i), and a uniform quality, i.e. Q(xt−i) = 1, were
used. The obtained result (Figure 7 (b)) is better than the
one we obtain with using majority voting (Figure 7 (a)).
Furthermore, none of the approaches examined manages to
outperform our temporal method.



5. Discussion
We present a new Bayesian framework which, for the

first time in the gender classification literature, achieves
robust classification from free-form face video sequences.
The proposed framework was first trained on FERET’s face
images and then evaluated on a video database presenting
challenging classification scenarios. Video sequences were
collected under different illumination and background con-
ditions, where each subject was free in his/her movements,
resulting in various face expressions, viewpoints, scales and
occlusions. The proposed system achieved high gender
classification performance (90%) considering the fact that
it was trained on still face image database collected un-
der controlled environment. Our Bayesian temporal model
achieved a superior classification performance compared to
its alternative approaches, reaching a performance increase
of up to 30% depending on the selected alternative approach
in Section 4.4 and 4.3. Our approach not only does a classi-
fier level fusion, but also utilizes the occurrence statistics of
the features, unlike any other alternative methods available
in the literature. In this paper, we utilized SIFT features
that were robust to the changes in scale, viewpoint, rota-
tion, translation and occlusion. However, any other features
could be tried without changing the underlying method.

We are currently investigating a number of avenues for
future work. We intend to extend our classification formula-
tion and our free-form video database to explicitly account
for uncertainty in detection and tracking, in order to classify
faces in crowded scenes. Moreover, we are currently com-
piling a comprehensive, annotated database of free-form
video sequences with the goal of having 50 unique subjects,
which will soon be publicly available.
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