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Abstract

In this article, we present a new model of object class
appearance over viewpoint, based on learning a relation-
ship between scale-invariant image features (e.g. SIFT) and
a geometric structure that we refer to as an OCI (object
class invariant). The OCI is a perspective invariant defined
across instances of an object class, and thereby serves as
a common reference frame relating features over viewpoint
change and object class. A single probabilistic OCI model
can be learned to capture the rich multimodal nature of ob-
ject class appearance in the presence of viewpoint change,
providing an efficient alternative to the popular approach of
training a battery of detectors at separate viewpoints and/or
poses. Experimentation demonstrates that an OCI model of
faces can be learned from a small number of natural, clut-
tered images, and used to detect faces exhibiting a large de-
gree of appearance variation due to viewpoint change and
intra-class variability (i.e. (sun)glasses, ethnicity, expres-
sion, etc.).

1. Introduction

In this article, we consider object class appearance mod-
eling for the tasks of detection and localization. Although
models of specific object appearance can often be learned
from a single image [13, 15, 9, 14], object class appearance
modeling remains an active area of research [16, 1, 7, 6, 5],
due to the difficulty in learning the wide range of appear-
ance variability characterizing an object class.

We focus in particular on the parts-based appearance rep-
resentation [16, 1, 2, 7, 6], which has recently enjoyed a
wave of interest due the maturity of local feature detectors.
Generic scale-invariant features [10, 11, 8], for instance, can
be efficiently and robustly extracted from images of a wide
variety of objects, in the presence of illumination changes
and in-plane geometrical deformations such as scale, rota-
tion and translation. Appearance models based on such fea-
tures can be efficiently learned and used to detect object in-
stances in the presence of occlusion. A significant drawback
of many such models, however, is that they attempt to infer

or detect a stable 2D configuration of features, and are thus
inherently single-viewpoint in nature. Extending such mod-
els to account for viewpoint change requires a battery of de-
tectors at different viewpoints/poses [16, 12], adding com-
plexity to model size, learning and fitting (detection) [16].

Our contribution is a new model of object class appear-
ance, designed specifically to address the difficulty of repre-
senting appearance over viewpoint change, which we refer
to as the OCI (object class invariant) model. We define an
OCI as a perspective invariant common to all members of
an object class. As such, an OCI serves as a common refer-
ence frame relating scale-invariant features over viewpoint.
Although such an invariant is difficult to extract directly [3],
we show that a probabilistic model relating scale-invariant
features to an OCI can be learned from natural, cluttered
imagery, and used to infer an object instance in the form
of an OCI in a new image, all in the presence of viewpoint
change, see Figure 1.

Figure 1. An OCI (shown here as a white ar-
row) is a perspective invariant defined across
all instances of an object class, i.e. faces in
the CMU database [4]. A probabilistic model
relating scale-invariant features (shown as
white circles) to an OCI can be used to infer
an OCI in a new image.

The remainder of this article is organized as follows:
we describe the OCI model in Section 2, followed by ex-
perimentation consisting of viewpoint-invariant detection in
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Section 3 and a discussion in Section 4. Although the OCI
model can generally be applied to a variety of object classes,
we carry through the example of face modeling for the pur-
pose of illustration.

2. The Object Class Invariant Model

In this section, we derive the object class invariant (OCI)
model, designed specifically to capture the rich multimodal
nature of object class appearance in the presence of view-
point change. We present the components and the prob-
abilistic formulation of the OCI model, and describe how
such a model can be learned and used to detect OCI in-
stances from natural, cluttered imagery.

2.1. Components of the OCI Model

The OCI model is based on generic scale-invariant fea-
tures [10, 11, 8], which can be automatically extracted
from images and consist of two distinct quantities: 1) a 4-
parameter geometrical structure g : {x, y, σ, θ} describing
the x,y location, scale and rotation of a feature within an
image and 2) a vector a describing the image intensity ap-
pearance at g. In addition, we consider a binary variable b
representing the presence (or absence) of a feature. A model
feature is thus denoted as m : {mb,mg,ma}, representing
the presence, location and appearance of a scale-invariant
feature related to the object class.

Within the context of this paper, we adopt an OCI in the
form of a line segment, a perspective invariant that shares
the same geometrical representation as the scale-invariant
feature. This has the implication that a single scale-invariant
feature is sufficient to infer an OCI location. The OCI is
thus denoted as o : {ob, og} representing the presence and
location of an OCI within an image. Note that o does not
contain an appearance component, as it is not directly ob-
servable from an image, but rather inferred via m.

2.2. Probabilistic OCI Formulation

The OCI model is designed quantify the probability of o
given a set of N model features {mi}. Assuming that {mi}
are conditionally independent given o, this probability can
be expressed using Bayes rule as:

p(o|{mi}) =
p(o)p({mi}|o)

p({mi}) =
p(o)

∏N
i p(mi|o)

p({mi}) , (1)

where p(o) is a prior over OCI location and occurrence, and
p(mi|o) is the likelihood of feature mi given o. Our model
focuses principally on the likelihood term p(mi|o), which

can be expressed as:

p(mi|o) = p(ma
i ,mb

i |o)p(mg
i |o)

= p(ma
i |mb

i )p(mb
i |ob)p(mg

i |ob, og), (2)

under the assumptions that ma and mb are statistically in-
dependent of mg given o, and that ma and o are statistically
independent given mb.

Appearance likelihood p(ma
i |mb

i ) is represented as
a multivariate Gaussian distribution in an appearance
space and parameterized by mean and covariance μa

i ,Σa
i .

p(mb
i |ob) is the probability of model feature occurrence

given hypothesis occurrence, represented as a discrete
multinomial distribution with event count parameters πi =
{π1

i , . . . , π4
i }. Geometry likelihood p(mg

i |ob, og) models
the residual error of a 4-parameter linear transform from
feature to OCI geometry mg

i → og , and is represented as a
Gaussian distribution with mean and covariance parameters
μg

i ,Σ
g
i . In order to characterize geometrical error in a scale-

invariant manner, scale is transformed logarithmically, and
translation is normalized by OCI scale.

2.3. Learning, Detection and Localization

Learning in a natural scenario requires efficiently iden-
tifying a small set of features {mi} common to an object
class, while rejecting the large majority which arise from
unrelated clutter, possibly with the help of weak supervi-
sion. These features must be both informative regarding o
and non-redundant, i.e. do not repeat information in other
features. This way, the number of model features N is kept
from growing indefinitely and the independence assumption
in equation (1) remains valid.

To replicate such a scenario, we distance ourselves from
training images that are aligned or sorted by viewpoint. In-
stead, we consider a set of natural images, containing fea-
ture observations {ma

i ,mg
i } and a manually labeled hypoth-

esis og. Labeling og represents a form of weak supervision,
and is easily done by tracing a line segment corresponding
to the OCI on the image. Unsupervised learning could be
performed in the absence of such labeling, at the cost of in-
creased search time, particularly for the difficult imagery we
use - we leave this for future work. Scale-invariant features
are extracted and represented using the SIFT technique [10],
based on an efficient implementation provided by the au-
thor, although a variety of other techniques could be used.
Briefly, SIFT features are extracted as maxima/minima in
a difference-of-Gaussian scale space pyramid, determining
feature geometry mg

i . The SIFT appearance representation
ma

i is a 128-value vector, corresponding to bins of a his-
togram of image first derivatives quantized into 8x4x4=128
bins over orientation and (x,y) position.

Learning involves estimating model parameters based on
a set of data vectors of the form {ma

i ,mg
i , o

g} with miss-
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ing data {mb
i , o

b}, and proceeds via the following two-step
process. Step (1): a set of samples {ob} is generated from
spatial likelihood p(mg

i |ob, og), after initializing parameters
μg

i ,Σ
g
i to reasonable values. Intuitively, this step involves

evaluating the spatial agreement of feature pairs {mi,mj}
wrt OCI geometry og . Step (2): a set of samples {mb

i}
is generated from appearance likelihood p(ma

i |mb
i ). Intu-

itively, this step involves evaluating the appearance agree-
ment of feature pairs {mi,mj}, and is done by setting pa-

rameters μa
i ,Σa

i to maximize likelihood ratio p(mb=1
i |ob=1)

p(mb=1
i |ob=0)

.

This process could iterate by estimating μg
i ,Σ

g
i and restart-

ing from (1), we found only a single iteration was necessary.
Once model parameters have been learned, features with

low p(mb=1
i |ob=1)

p(mb=1
i |ob=0)

can be discarded, as they provide little in-

formation regarding o. In order to reduce feature redun-
dancy, we discard mi that have high mutual information
with other model features {mj} given o, in a manner sim-
ilar to [2]. Mutual information estimation is noisy, how-
ever, as p(mb=1

i |ob) is typically poorly sampled due to the
rare occurrence of mb=1

i . As a result, significant depen-
dencies still exist between database features, artificially re-
ducing the likelihood in equation (2). We adopt a heuristic
technique based on the assumption that spatial overlap of
features mi with respect to o implies dependence, to more
accurately estimate the joint probability.

For the purpose of detection and localization, we are in-
terested in evaluating whether a set of data observations in
a new image are the result of a true OCI or random noise,
i.e. o = {og, ob=1} or o = {og, ob=0}. These hypotheses
can be compared via a Bayes decision ratio:

γ(o) =
p(o|{mi})
p(o|{mi}) =

p(o)
p(o)

N∏

i=1

p(mi|o)
p(mi|o) , (3)

where γ(o) > 1 indicates the presence of an OCI and ra-
tio p(o)

p(o) is a context-specific factor which determines the
false detection rate. Optimization requires determining
og = argmax

og
{γ(o)}, which involves a search over all

combinations of one-to-one pairings from model features to
data observations, or to no observation at all (in which case
p(mi|o)
p(mi|o) ≈ 1). Although generally intractable, this search
can be constrained by identifying clusters of features pro-
ducing similar hypotheses og .

3. Experimentation

The goal of experimentation was to demonstrate the fea-
sibility of 1) learning an OCI model from a small set of
natural, cluttered training images, and 2) using the model to
detect new class instances, all in images exhibiting a wide
range of appearance variability due to viewpoint change

and intra-class variation. For the purpose of experimenta-
tion, we chose to model the class of face images due to the
abundance of raw data, although the OCI model is generally
applicable to any object classes containing detectable scale
invariant features, such as cars, etc. Training and testing
data consisted of 180 examples of faces of different people
taken from a variety of viewpoints, from the internet and the
CMU profile database [4], in addition to a set of 43 negative
image of scenes not containing faces. The positive exam-
ples contained a high degree clutter, and exhibited a wide
variety of appearance variability due to viewpoint change,
(sun)glasses, expressions, race, etc., see Figure 2.

OCIs were defined and labeled as a line segments from
the nose tip to the forehead, as in Figure 1, extreme side
or rear views of the face can be labeled by guessing the
approximate projection of the OCI, when the landmarks
are not visible. Such an OCI is sufficient for modeling
faces over a 360 degree range of viewpoint in the axial
plane, assuming an orthographic projection model (i.e. ob-
ject size is small relative to the distance between object and
camera), although the OCI magnitude vanishes in overhead
views. Modeling object appearance over an entire view-
sphere could be accomplished by considering several differ-
ent OCIs corresponding to perpendicular 3D line segments
in the world - two such OCIs would limit the maximum
magnitude discrepancy of a single OCI to 1√

2
, for example

- we leave this for future work.

Model learning involved ≈ 16, 000 features, of which
≈ 12, 000 were deemed to be uninformative wrt o and dis-
carded, in addition to ≈ 1, 300 which were deemed to be
redundant, resulting in a model of ≈ 2, 800 features. This
demonstrates learning in the presence of significant clutter.
Each detected OCI consisted of a unique combination of
10−20 model features from different training images, high-
lighting the ability of the OCI model to represent a large
range of appearance modes. Model learning is quick, on
the order of minutes, and detection on the order of seconds
for images of size ≈ 300 × 200 pixels.

Detection trials were performed in a leave-one-out man-
ner - a model was trained using the entire training set ex-
cept for one image, which was then used to test the model,
for each image in the training set. A detected hypothesis
was considered successful if it fell within a scale-dependent
threshold of the labeled OCI, i.e. a difference in scale, ori-
entation and (x,y) translation of log(1.5) octaves, 20 de-
grees, and 0.5/σ pixels, where σ is the scale of the labeled
OCI. In addition, a mechanism of non-maximal suppression
was applied to remove potential hypotheses in a neighbor-
hood around hypothesis maxima. Figure 2 illustrates the
result of detection trials. The ROC curve was based on a
total of 180 valid detections and 26,475 false positives, and
rises quickly to a maximum detection rate of 81% - this
rate is conservative, as several near-solutions were labeled
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as false, i.e. that of Pete Sampras kissing the trophy.

Figure 2. Detection results on a database of
180 face images, including images from the
CMU profile database [4], containing a wide
range of viewpoint and appearance variabil-
ity. The ROC curve in the upper left corner
plots the detection vs. false positive char-
acteristic of the OCI model as p(o)

p(o) is varied.
The white circles overlaying the images show
OCI detections, false positives, and missed
detections for a particular value of p(o)

p(o) .

4. Discussion

In this article, we presented a new model of object class
appearance over viewpoint, based on a perspective invariant
defined across instances of an object class which we refer to
as an OCI. A single OCI model is capable of representing
viewpoint change, in-plane translation, rotation and scale,
in addition to intra-class appearance variability, providing
an alternative to the battery of single viewpoint models re-
quired by many approaches to represent viewpoint change.

In comparing models of object class appearance, it is im-
portant to consider the context surrounding learning and
detection. Models suitable for learning on thousands of
aligned images are arguably superior in terms of detection
performance [12], but the degree of supervision required is
daunting. Other models are interesting in that they learn
with very little supervision [7], but typically require simpli-
fying assumptions, such as a small fixed number of model
features (i.e. 3-7) with unimodal appearance (i.e. no sun-
glasses), and single viewpoint data (i.e. car rear). The OCI

model falls somewhere in between - the degree of supervi-
sion is low, as images are unaltered and contain significant
clutter, yet a single OCI model is able to learn and detect the
rich multimodal appearance of a difficult face image set, in
the presence of viewpoint change.

The current implementation showed the feasibility of
OCI modeling from a viewplane where the OCI magni-
tude remains approximately constant wrt object size. Fu-
ture work will involve testing multiple OCIs for detection
over complete viewspheres. We intend to apply the OCI
framework to different object classes, using different types
of invariant features. Finally, we are currently pursuing OCI
model learning in the unsupervised context.
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